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THREE-DIMENSIONAL CONTACT PROBLEM OF THE MOTION OF A STAMP WITH FRICTION* 

L.A. GALIN and I.%. GORIAMEVA 

There is considered the three-dimensional contact problem of elasticity theory with 
friction forces collinear to the motion direction. Such a case holds during stamp 
motion along the boundary of an elastic half-space with anisotropic friction /l/. 
In the case of an arbitrary friction surface, the mentioned force distribution is 
satisfied approximately during stamp motion. 

Taking account of the friction force is essential in such problems since it permits deter- 
mination of the moment acting on the moving stamp because of the nonsymmetric pressure distri- 
bution. Known methods of solving three-dimensional contact problems with friction forces are, 
as a rule, for the axisymmetric case /2,3/, while certain solutions are obtained under the 
assumption of an axisymmetric pressure distribution on the contact area with a nonsymmetric 
friction distribution /4,5/. Recently, numerical methods of solving a similar species of 
problems started to be developed /6/. 

The displacement is considered of a rigid stamp along the boundary of a rigid half-space 
in the direction of the X axis. We shall consider the problem quasistatic, which imposes de- 
finite constraints on the velocity v of stamp displacement, and we introduceacoordinatesystem 
(I, Y,z) coupled to the moving stamp. We shall consider the friction forces on the contactarea 
to be directed opposite to the stamp motion (along the o.z axis). The stamp is here displaced 
so that it cannot turn under the effect of the applied forces. The boundary conditions will 
have the form 

20 = g (5, Y) + 6, 'c,, = pcz, 'cy. = 0, x, Y fz B (1) 
c* = 'c,, = 'Tyr = 0, I, y zz P 

Here piis the friction coefficient, g(x, y) is the shape of the stamp, 6 is its seat,and 
Q is the contact domain. 

Stamp motion in the direction of the z axis can be represented as the superposition of 
displacements of points of the base caused by the application of a normal pressure p(x, y) and 
of displacements due to the action of a tangential force. It follows from the solutionofthe 
problem of an elastic half-space subjected to lumped forces with components along the oz axis 

(Tz) and the ox axis (TX) applied at the origin that vertical displacements of pointsofthe 
boundary half-plane (z = 0) are determined by the formula 

Integrating (2) 
obtain the following 

The coefficient a will be zero when v=O.S, i.e., the elastic body is incompressible. In 

(i - va) T, 
w=nEr-l- 

(I +Y) (i -zv) sT, 
2nE F' R=V_ (2) 

over the whole contact area B and taking account of conditions (l), we 
integral equation todeterminethe pressure p(x, y) under the stamp: 

5) P(EJl)[ v I 
Z--s (3) 

(z-E)'+ (v - 7)" 
+v (5 - f)” + (u - q)” 1 dE dq = 

-& Ig(+* Y) + 61, 
I-2v 

c=2-_2v 

this case, the presence of friction forces will not affect the magnitude of the normalpressure. 
For real bodies the Poisson's ratio v takes a value O<v<O.5, hence the quantity varies be- 
tween the limits 0.5 and 0, where a=O.286 for the Poisson's ratio v=O.3. Moreover, it 
should be taken into account that the magnitude of the friction coefficient P is also small. 
For dry friction of steel on steel p= 0.2. Considering V'O.5, in this case Pu N 0.057. For 
oiled surfaces the quantity mu takes a still smaller value. 

Let pa = e and let us consider this quantity as a certain small parameter. When the 
pressure on the contact area is bounded everywhere, the solution of the integral equation (3) 
for pa = 0 can be taken as the zero-th approximation p,(~,y)~ We shall examine solutions 
p(x, y) of (3) close to p,,(x,y) when the parameter e is small. In this case we represent 
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the required function p(x,y) in the form of the series 

P (5, Y) = PO (G Y) + Vl("V !/) + . . . + E”P, (x, 9) + . . . (41 

Substituting the series (4) into the fundamental integral equation (3), we obtain a re- 
current system of equations to determine the unknown functions Pn (G P). Introducing the 
operator notation 

we write this system in the form 

To prove the convergence of the series (4) we construct its majorant number series. For 
definiteness we consider the contact area to have the shape of a circle of radius a (0 is. ti+ 
if'< a'). 

The operator A is a linear bounded operator that conformally maps the space of functions 
continuous in the domain Q into itself one-to-one. For any +,PE~ the norm of the operator 
A is uniformly bounded 

The mutual one-to-oneness of the mapping follows from the fact that the equation 

has only a trivial solution because of the symmetry of the kernel L(r,p,O,(p) and the complete- 
ness of its eigenvalue system in the space L.(Q) /7,8/. 

Therefore, all the conditions are satisfied for the Banach theoremontheinverseoperator 
/9/, from which it follows that the operator A has a bounded inverse operator A-‘. The form 

of this operator is presented in /2/. If f is a smooth function, and o is a bounded smooth 
function, then the operator A-l has the form 

1 
o=A-V)=~~ ssv Af (Ev rl) 

P 
(2 - cl* + (u - w x 

=a 
~~a-~a-~ya’-z*-u’ 

a v (I - E)’ + (u - SP 
dEdq 

The norm of the operator Bis also bounded and the following estimate is valid 

PSli= auP US(e)l= S"P ss 
It.-&l&d? 

IN@!&1 n:x"ly'&o' D (+-e,*+(u-s)a = 

(6) 

(z-E=pcoa(P, u--=psincp) 

We multiply each equation of the system (5) by the inverse operator A-‘. Then 

in (29 Y) = A-‘B tpn-1 (2, y)l = C t~,,_l (z, y)l 7) 

The operator C is also bounded, and the following inequality is valid (k i-s a certain 

number) 
ICB<lA-10 UBY=k 

Therefore, and estimate follows from (7) for terms of the series (4) 

I in (2. Y) I G 0 C II ll~n-1 (2, Y) 0 = k II in-1 (2. Y) U 
that indicates that the series (4) converges uniformly for all e<l/k. 

The dimensions of the contact area (the radius of the circle P) are determined from the 

condition P(z,u)= Oon the boundary of the contact area P. 
As an illustration, let us consider the problem about the motion of a smooth axisymmetric 

stamp of circular planform g(r) = Dr” on the boundary of an elastic half-space. We consider 

the contact area to be a circle of radius a. As is known /2/, in this case the function 

po(x, y) = p. (r)is determined from the formula 

PO (4 = hED vQz7 
n (1 - v*) 
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To find the next term in the series (4), we obtain 

As follows from /lo/, the solution of the equation 

A Ip, (r, e)l = b (r) cos e 

has the form p1 (r,6) = g(r)eese, hence the function p(r)is determined from the equation 

The value of the following integral 

was used in deriving this equation, where K(x)andE(x)are complete elliptic integrals 
first and second kinds. 

The expression for the function a(r) can be obtained directly also by using (6) 
method for solving (8) proposed in /lo/. 

The following terms in the series (4) will have the form 

pn h 0) = i qnk tr) cos ke 
X=1 

as can be seen by evaluating the integral 

and using the result in /2,10/ asserting that if the shape of the stamp surface being 
in an elastic half-space is expressed by the formula 

(8) 

of the 

or the 

inserted 

then the pressure q@',(P) under the stamp will have the form 

n n 

q (r, Vpf = qo(r) + 2 n$ (r)cosmg + 2 ~$2 (r)sis mcp 
m=J. m==;l 

In this case we consider the right side of the integral equation (5) as the function 
f(t,@ and the form of the solution governs the function p,,(s,y) (a= i,&.. 4. 

In the case when the shape and size of the contact area are given in advance, the pres- 
sure on the boundary can have a singularity. In this case we seek the solutionoftheintegral 

equation (3) in the form 
P CC Y) = II, (x7 Y)X 6% Y) 

where X(X, y) is the extracted singular part, and +(G Y) is a regular function that can be 

determined by the method of expansion in a small parameter described earlier. 
We find the singularity of the pressure function p(x, y) as the point (x,&approaches a 

certain point (x,,y,) belonging to the contour of the loading domain, which is the angular line 
of the stamp. Evidently only the nearest neighborhood ,a, of the pointMwil1 exert influence 
on the singularity of the behavior of the solution of the integral equation (3) at the bound- 
ary point M(x,, yO). We introduce a coordinate system x’, y’ at this point by directing the 
I' axis along the normal and the y' axis along the tangent to the boundary of the contactarea 
B at the point M. The axes x8, y’ will make the angle 0 with the axes x,y. We decompose 
the stamp motion at the point Uinto two components, with velocity veose along the x' axis 
and with velocity-vsin t3 along the y' axis. Correspondingly, we decompose the state of stress 



822 

in the domain Q,, which we select symmetric with respect to #(--a gs'<O, -b < y'< g), in- 
to the components ?xc,, = r,, co9 I3 and 7y,r = -zx. sin 9. 

We consider the integral equation (3) at the boundary point (x0,@,) of the contact area 
and we separate the integral in the left side of (3) into two: in the domain Q, inthe (x',y') 
coordinate system with origin at the point (x,, Yo), andinthe remaining domain Ba = B \a,. 
We will then have 

(9) 

As in all contact problems, the singularity of the function p(x',y') on the boundary is 
of power-law nature, i.e., P WV Y’) = $ (X’, Y’) / (V_ and is determined by the first in- 
tegral component on the left side of (9). Because of the symmetry of the domain Q,(S&+ 0) 
with respect to thex' axis and the regularity of the function $(x’, #fin the domain o,, the 
intesral 

due to the action of forces directed along the tangent to the boundary, will not, comparedto 
the integral 

exert influence on the nature of the singularity of the function p(x’, y’).This deduction 
agrees with the fact established in /2/ that inthe case of friction forces possessing axial 
symmetry and directed perpendicularly to the radius of the contact area, the equations to 
determine the stress and strain components decomwse into two independent groups and the pres- 
ence of tangential forces will not affect the magnitudie ofthepressure on the contact area. 
We hence seek the nature of the singularity in the pressure function at the point Mby con- 
sidering the motion of the nearest neighborhood 91 of the pointilii along the normal to the 
boundary of the contact domain at this point. In this case it can be considered that the 
domain 521 is under the conditions of the plane problem. 

We therefore have a plane contact problem with friction forces when the friction coef- 
ficient equals pr = k co5 e. We use the solution of this problem, presented in /2/, and we 
determine the singular part of the pressure function X(X,!/) in the neighborhood of the point 
H. For definiteness, we consider a circle of radius G as the domain B. In this case the 
X1 axis coincides with the radius of the contact area. Then the pressure on the edges of 
the contact area will have a singularity of the form (for convenience we introduce a polar 
coordinate system) 

x (r, fJ) = [a _ l,p+Y ’ 
JI=+ arctg(p&= $arctg(ecos0) 

Therefore, the pressure distribution on the contact area under a cylindrical stamp with 
angular line on the boundary of the contact domain should be sought in the form 

p(r,6) = *((he) 
(2 - ,)‘l++Y 

The function Q (r,e) is bounded everywhere and aontinuous. An equation follows from (3) 
and (5), which the function g(r,B)should satisfy 

where g(r) is the shape of the lateral surface of the stamp which is a body of revolution. 
Furthermore, to find the function 11,(r,0) we can apply the method of expansion in a series in 
a small parameter, elucidated above, and can construct a recurrent system of equations to 
determine the desired terms of the series &(r,8). The mentioned method of extracting the 
singularity can be applied only for sufficiently smooth shapes of the contact contours. Inthe 
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case of a contact area with angular points, the general method of extracting singularities, 
elucidated in /ll/, should be utilized. 

Finally, we consider the case of motion of a stamp of circular planform along the bound- 
ary of a rough elastic half-space. We assume that additional normal displacements of the 
boundary of the elastic base are proportional to the pressure p(r,8) because of deformation 
w,(r,e) of the microprojections 

w* (r, 0) = XP (r, 0) (10) 

where X is a coefficient characterizing the deformation properties of the rough layer. 
The normal displacements of the elastic half-space boundary are comprised of elastic 

displacements of points of the half-space boundary, determined by (3), and additionaldisplace- 
ments because of deformation w,(r,e) of the microprojections (10). We write the contact 
condition between the stamp and the half-space boundary 

(11) 

We note that the solution of (11) cannot become infinite at the ends of the contact area. 
In fact, assuming the pressure to have an integrable power-law singularity of the form 

(a-r)*(O<p<i, and (I is a point on the boundary and taking into account that the integral 
term in (11) has no singularity on the domain boundary, we obtain that the left side of (11) 
has a singularity of the order of (O-J@, while there is no singularity on the right side. 
The contradiction obtained indeed proves the assertion expressed above. 

As before, we represent the pressure function p(r,e),which is bounded everywhere, in the 
form of the series 

P (r, 0) = po (r) + ep, (r, e) + . . . + e”pn (r, e) + . . . (12) 

and substitute it into (11). We then obtain a recurrent system of equations to determine the 
unknown functions p,(r,fl) 

A Ipo (r)l + XPO (r) = g (r) + 6 (13) 

A IP, (r., @)I + XP, (r, 0) = B Ipnml (r, @I, n = 1, 2, . . . 

Therefore, to determine the required functions p,,(r,O)an inhomogeneous Fredholm integral 
equation of the second kind (13) must be solved in each step. Its solution can be obtained 
by successive approximations /12/. 

Convergenceofthe series (12) is proved analogously to the preceding since the operator 
A* in the left sides of (13) are bounded as the sum of two bounded operators. 

In all the cases considered, the pressure on the contact area is represented bytheseries 
(4), which indicates particularly that the pressure under a stamp of circular planform will 
be distributed nonsymmetrically during its motion, whereupon an additional moment M,with re- 
spect to the oy axis will occur 

orn 

MY-S S p(p,d~scOscpdpd~=e ST PI (p, cp) p'cna cpdpdm + o(aS) 
"0 0" 

The equivalent pressure P will be displaced in the direction of stamp motion at a dist- 
ance d from its axis, which can be determined to second order accuracy from the formula 

As was shown earlier, the function for the pressure has the form ~(r,8)=~o(r)+ep(r)cose+ 
O(e%) during displacement of a smooth stamp of circular planform along an elastic half-space 
boundary. In this case the moment M, and the displacement of the equivalent d are determin- 
ed from the formulas 

0 (I 

My=a ~s(~)pBdp+d(e% d=+S,(,)tid,a 
0 0 

From the equilibrium condition for the moments of forces acting on a moving stamp it fol- 
lows that the force T causing stamp motion and directed along the 02 axis should be applied 
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at a distance h from the base, where 

MY Mt/ o a 

h=?;-=p=s q(p)p2dp=$ q(p)p?dp s s 0 0 
(14) 

When (14) is not satisfied, 
in the boundary conditions (1). 
w(r,f~) in (1) will have the form 

the stamp will have an oblique base, which implies a change 
In the case of a flat stamp of circular planformthe function 

of 

1. 

2. 
3. 

4. 

5. 
6. 

7. 
8. 

9. 

The unknown constant b governing the slope of the stamp can be found from the condition 
equality of the moments of all forces acting on the stamp. 
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